Diterpenoid Alkaloids from Delphinium tatsienense

by Feng-Zheng Chen^a)^b), Qiao-Hong Chen^a), Xiao-Yu Liu^a), and Feng-Peng Wang*

 ^a) Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, P. R. China (phone/fax: +86-28-85501368; e-mail: wfp@scu.edu.cn)

^b) Institute of Biological Industry of Chengdu University, Chengdu 610016, P. R. China

Three new C_{20} -diterpenoid alkaloids, along with twenty-two known alkaloids, were isolated from the whole herbs of *Delphinium tatsienense*. The new alkaloids include a vakognavine-type C_{20} -diterpenoid alkaloid, designated as tatsienenseine A (1), and two hetisine-type C_{20} -diterpenoid alkaloids, designated as tatsienenseines B (2) and C (3). Their structures were elucidated by IR, HR-ESI-MS, 1D- and 2D-NMR analyses.

Introduction. - Diterpenoid alkaloids are believed to be the major bioactive components of the genus *Delphinium* [1-4], a large genus within the Ranunculaceae family. As a class of structurally complex compounds, they possess a broad range of chemical and pharmacological properties, and also demonstrated a characteristic merit for chemotaxonomic considerations [1-4]. Delphinium tatsienense FRANCH grows mainly in southwest Sichuan and northwest Yunnan of China [5]. Previous investigations on the phytochemistry of this plant by the *Pelletier*'s research group resulted in the isolation of more than ten diterpenoid alkaloids [6-10]. Our present study on the whole plants of *Delphinium tatsienense* led to the identification of three new diterpenoid alkaloids, designated as tatsienenseines A - C(1-3), besides twentytwo known diterpenoid alkaloids, i.e., majusine C [11], delbonine [12], 6-acetyldepheline [13][14], deltatsine [7], browniine [15], 14-acetyldelcosine [15], 14-acetylbrowniine [15], postanisine F [16], ajacine [15], delcosine [17], lerovine 14-O-acetate [18], 7-acetylbarbaline [19], acetyldelgrandine [20], deacetylambiguine [6], ajadelphine [21], 14-deacetylnudicauline [22], delsoline [23], barbaline [19], delsemine A [23], delsemine B [23], tatsinine [23], and delgrandine [20]. These known compounds were identified by comparing their spectroscopic data with those reported in the literature. Herein, we described the separation and structural elucidation of the three new alkaloids 1-3.

Results and Discussion. – Tatsienenseine A (1; *Fig. 1*) was obtained as an amorphous powder. Its molecular formula was determined as $C_{43}H_{45}NO_{13}$ based on its HR-ESI-MS (*m*/*z* 784.2961 ([*M*+H]⁺) and NMR spectra. Its NMR spectra (*Tables 1* and 2) afforded evidence of a MeN group (δ (H) 2.43 (*s*); δ (C) 33.3 (*q*)), a tertiary Me group (δ (H) 1.02 (*s*); δ (C) 26.2 (*q*)), an exocyclic C=C bond (δ (H) 5.16 and 5.26 (2*s*, each 1 H); δ (C) 141.7 (*s*) and 115.3 (*t*)), four Ac groups (δ (H) 2.00, 2.09, 2.09, and 2.12 (4*s*, each 3 H); δ (C) see *Table 1*), two Bz groups (δ (H) 7.10–7.76 (*m*,

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Compounds 1-3 isolated from Delphinium tatsienense

10 H) (*Table 2*); $\delta(C)$ see *Table 1*), and a CH=O group ($\delta(H)$ 9.23 (br. *s*); $\delta(C)$ 196.0 (*d*)). Its ¹³C-NMR spectrum, along with the HMQC and DEPT data, displayed four resonances of nonoxygenated quaternary C-atoms at $\delta(C)$ 141.7, 56.1, 51.8, and 43.2. These characteristic data, in combination with the biogenetic consideration, suggested that compound **1** should be a vakognavine-type C₂₀-diterpenoid alkaloid [1]. The NMR spectra of **1** are very similar to those of the known vakognavine-type C₂₀-diterpenoid alkaloid majusimine A [11], except for the absence of AcO–C(7) in compound **1**. The difference of 58 mass units in their molecular masses also supports the abovementioned difference. Furthermore, the remaining four AcO groups at C(1), C(3),

Table 1. ¹³C-NMR Data (100 MHz, CDCl₃) of Compounds 1-3. δ in ppm.

	1	2	3		1	2	3
C(1)	69.8 (d)	54.1 (t)	55.7 (t)	AcO-C(1)	169.8 (s), 21.6 (q)		
C(2)	66.5(d)	51.9 (t)	51.4 (t)	AcO-C(3)	169.6 (s), 21.3 (q)		
C(3)	65.1 (d)	212.6 (s)	209.0(s)	AcO-C(11)	170.7 (s), 20.9 (q)		
C(4)	51.8 (s)	42.3 (s)	42.2(s)	AcO-C(15)	170.7 (s), 20.9 (q)		
C(5)	56.6 (d)	54.1 (d)	50.2(d)	PhCOO-C(2):			
C(6)	58.7 (d)	98.0 (s)	58.2 (d)	C=O	164.5 (s)		
C(7)	29.5 (d)	33.8 (<i>t</i>)	25.4 (t)	C(1')	129.0 (d)		
C(8)	43.8 (s)	45.4 (s)	41.1 (s)	C(2',6')	129.4 (d)		
C(9)	49.1 (d)	47.9 (d)	48.9 (d)	C(3',5')	128.3 (d)		
C(10)	56.1 (s)	56.3 (s)	47.9 (s)	C(4')	133.3 (d)		
C(11)	73.2 (d)	38.8 (t)	47.7 (t)	<i>PhC</i> OO–C(13):			
C(12)	44.9 (<i>d</i>)	40.8(d)	38.7(d)	C=O	165.7 (s)		
C(13)	72.7(d)	72.1(d)	73.5 (d)	C(1')	129.0 (d)		
C(14)	39.0 (d)	40.9(d)	43.2 (<i>d</i>)	C(2',6')	129.3 (d)		
C(15)	66.0(d)	29.9 (t)	35.3 (t)	C(3',5')	128.2(d)		
C(16)	141.7 (s)	145.6 (s)	146.4(s)	C(4')	133.3 (d)		
C(17)	115.3 (t)	108.4(t)	107.1(t)	^{<i>i</i>} <i>PrC</i> OO–C(13):			
C(18)	26.2(q)	30.1(q)	29.7 (q)	C=O		176.7 (s)	176.2 (s)
C(19)	196.0(d)	62.4 (<i>t</i>)	63.0 (<i>t</i>)	CH		33.8 (d)	34.0(d)
C(20)	63.5 (<i>d</i>)	66.0(d)	69.0(d)	Me		18.8(q)	19.0(q)
MeN	33.3 (q)			Me		19.0(q)	19.0 (q)

	1	2	3
$H-C(1)$ or $CH_2(1)$	5.85 (d, J = 4.0)	2.33, 2.39 (overlapped)	2.32, 2.68 (overlapped)
$H-C(2)$ or $CH_2(2)$	5.80(t, J = 4.0)	2.44 - 2.48(m)	2.14, 2.38 (overlapped)
H–C(3)	5.27 (d, J = 4.0)	_	_
H-C(5)	2.21(s)	2.41 (s)	2.46 (s)
H-C(6)	3.10 (d, J = 4.0)	_	2.02 (br. s)
CH ₂ (7)	1.71 (dd , $J = 16.0, 4.0$), 2.15 (overlapped)	2.30 (overlapped)	1.92 (dt , $J = 10.8$, 2.0)
H-C(9)	2.88 (d, J = 10.0)	2.23 - 2.28(m)	2.42 - 2.46 (m)
H–C(11) or	5.44 (br. $d, J = 9.6$)	2.08-2.12, 2.20-2.25 (2m)	2.20-2.25, 2.64-2.68 (2m)
CH ₂ (11)			
H–C(12)	2.69 (d, J = 3.0)	2.13 - 2.18 (m)	2.25 - 2.30 (m)
H–C(13)	5.34 (dt, J = 9.6, 3.0)	4.81 (t, J = 13.2)	4.97 (dt, J = 9.6, 2.0)
H-C(14)	3.23 (dd, J = 10.0, 3.0)	2.19 - 2.23 (m)	2.08 - 2.13 (m)
H–C(15) or	5.78 (s)	1.23, 1.96 (AB, J = 13.2)	2.40-2.44, 2.24-2.28 (2m)
CH ₂ (15)			
$CH_{2}(17)$	5.16, 5.26 (2s)	4.64, 4.79 (2s)	4.70, 4.87 (2 br. s)
Me(18)	1.02 (s)	1.38 (s)	1.49 (s)
H–C(19) or	9.23 (s)	2.09, 3.11 (AB, J = 12.0)	1.73, 2.60 (AB, J = 12.4)
$CH_{2}(19)$			
H-C(20)	3.91 (s)	2.20 (s)	2.12 (s)
MeN	2.43(s)		
AcO-C(1)	2.00(s)		
AcO-C(3)	2.12(s)		
AcO-C(11)	2.09(s)		
AcO-C(15)	2.09(s)		
PhCOO–C(2):			
H–C(2',6')	7.76 (d, J = 7.6)		
H–C(3',5')	7.10 (t, J = 7.6)		
H-C(4')	7.35 (t, J = 7.6)		
PhCOO-C(13):			
H–C(2′,6′)	7.53 $(d, J = 7.2)$		
H–C(3',5')	7.29 (t, J = 7.2)		
H-C(4')	7.46 $(t, J = 7.2)$		
ⁱ PrCOO–C(13):			
СН		2.30-2.35(m)	2.30 - 2.35(m)
Me		1.08 (d, J = 7.2)	1.21 (d, J = 7.2)
Me		1.10 (d, J = 7.2)	1.22 (d, J = 7.2)

Table 2. ¹*H*-*NMR Data* (400 MHz, CDCl₃) of Compounds 1-3. δ in ppm, J in Hz.

C(11), and C(15) in compound **1** were apparent from the HMBCs H–C(1)/*Ac*O–C(1) (δ (C) 169.8), H–C(3)/*Ac*O–C(3) (δ (C) 169.6), H–C(11)/*Ac*O–C(11) (δ (C) 170.7), and H–C(15)/*Ac*O–C(15) (δ (C) 170.7) (*Fig.* 2). Two Bz groups at C(2) and C(13) could be supported by the HMBCs H–C(2)/*Bz*O–C(2) (δ (C) 164.5) and H–C(13)/*Bz*O–C(13) (δ (C) 165.7) (*Fig.* 2). In addition, the relative configurations of these ester groups were evident from the NOESY correlations summarized in *Fig.* 3. The NOEs H_a–C(1)/H–C(20) and H_a–C(3)/H_a–C(1) indicated the *a*-orientation of H–C(1) and H–C(3); similarly, the NOEs H_β–C(2)/H_β–C(5), H_a–C(1)/AcO–C(11), H_β–C(13)/H–C(17), H_β–C(13)/AcO–C(15), and H_β–C(15)/H_β–C(9), suggested the *β*-orienta-

tion of H–C(2), H–C(11), H–C(13), and H–C(15). Therefore, the structure of tatsienenseine A (1) was assigned as $(1\beta,2\alpha,3\beta,11\alpha,13\alpha,15\alpha)$ -1,2,3,11,13,15-hexahydroxy-21-methyl-19,21-secohetisan-19-al 1,3,11,15-tetraacetate 2,13-dibenzoate.

Fig. 2. Key ${}^{1}H, {}^{1}H-COSY$ (-) and HMBC (H \rightarrow C) features of 1

Fig. 3. Key NOESY $(H \leftrightarrow H)$ correlations of 1

Tatsienenseine B (2; Fig. 1) was isolated as an amorphous powder, and its molecular formula was determined as C₂₄H₃₁NO₄ according to the HR-ESI-MS and NMR. Compound 2 exhibited characteristic NMR features (Tables 1 and 2) of a C_{20} diterpenoid alkaloid [1] bearing a tertiary Me group ($\delta(H)$ 1.38 (s); $\delta(C)$ 30.1 (q)), an exocyclic C=C bond (δ (H) 4.64 and 4.79 (2s, each 1 H); δ (C) 108.4 (t) and 145.6 (s)), an isobutyryl group (δ (H) 1.08 and 1.10 (d, J = 7.2 Hz, each 3 H); δ (C) see *Table 1*), and a ketone carbonyl group ($\delta(C)$ 212.6 (s)). The resonances of four nonoxygenated quaternary C-atoms in the ¹³C NMR spectrum (δ (C) 42.3, 45.4, 56.3, and 145.6 (4s)) are indicative of the 'finger-print' characteristics of a hetisine-type C₂₀-diterpenoid alkaloid [1]. The existence of an oxygenated quaternary C-atom at $\delta(C)$ 98.0 strongly suggested that compound 2 possesses an OH group at C(6) in addition to the above-mentioned ester. This assignment was supported by the HMBCs C(6)/H-C(7) and C(6)/H-C(5)(Fig. 4). The isobutyryloxy group could be positioned at C(13) due to the HMBC H–C(13)/Me₂CHCOO (δ (C) 176.7). The ketone carbonyl was located at C(3) based on the HMBCs H–C(1)/C(3), H–C(5)/C(3), Me(18)/C(3), and $CH_2(19)/C(3)$. In the NOESY plot, the correlations H–C(15)/H–C(13) suggested the β -orientation of H–C(13). Accordingly, the structure of compound **2** was elucidated as $(6\beta, 13\alpha)$ -6-hydroxy-3-oxohetisan-13-yl 2-methylpropanoate, named tatsienenseine B.

Fig. 4. Key ${}^{1}H, {}^{1}H-COSY$ (---) and HMBC (H \rightarrow C) features of 2

Tatsienenseine C (**3**; *Fig. 1*) gave a molecular formula $C_{24}H_{31}NO_3$, as determined by HR-ESI-MS (m/z 382.2378 ($[M + H]^+$)) and supported by NMR data. It showed similar NMR spectroscopic patterns to those of **2** (*Tables 1* and 2), except for H–C(6) and C(6), indicating that both compounds are of the same type of C_{20} -diterpenoid alkaloids and that the only difference between these two compounds is the absence of an OH group at C(6) in compound **3**. This hypothesis was further evidenced by the disappearance of OH absorptions in the IR spectrum of **3** and the difference of 16 mass units in **3** found by mass spectroscopy. The proposed structure of compound **3** was also supported by 2D-NMR experiments, and the unambiguous assignments of the ¹H- and ¹³C-NMR data of **3** were completed by 2D-NMR techniques (¹H,¹H-COSY, HMQC, HMBC, and NOESY). Thus, the structure of tatsienenseine C (**3**) was elucidated as (13 α)-3-oxohetisan-13-yl 2-methylpropanoate.

It is uncommon for the hetisine-type diterpenoid alkaloids to possess a ketone C=O group at the C(3) position. Following majusidine B [10], tatsienenseines B and C represent the second and third examples of this type of alkaloids.

This research work was financially supported by the *National Natural Science Foundation of China* (No. 30472075).

Experimental Part

General. TLC: silica gel plates; detection by spraying with Dragendorff's reagent. Column chromatography (CC): silica gel (300–400 mesh, 10–40 µm; Qingdao Marine Chemical, Inc., Qingdao, P. R. China). Optical rotations: Perkin-Elmer-341 polarimeter. IR Spectra: Nicolet-FT-IR-200S spectrometer. 1D- and 2D-NMR Spectra: Varian-Unity-Inova-400/54 spectrometers; at 400/100 or 200/ 50 MHz, resp.; δ in ppm with SiMe₄ as the internal standard; J in Hz. ESI-MS: Finnigan-LCQ spectrometer; in m/z (rel.%). HR-ESI-MS: VG-Auto-Spec-3000 spectrometer.

Plant Material. The whole herbs of *Delphinium tatsienense* FRANCH were collected in Miyi County, Sichuan Province, P. R. China, in September 2007. The Plant was authenticated by Professor *Q. E. Yang* of the Beijing Institute of Botany of the Chinese Academy of Sciences, where a voucher specimen (No. 200709-1) has been deposited.

Extraction and Isolation. Air-dried and powdered whole herbs (3.0 kg) were percolated with 0.1M HCl (401). The acid aq. soln. was basified with 10% aq. NH₄OH soln. to pH 9 and then extracted with AcOEt (3×201). Evaporation of the solvent afforded the total crude alkaloids (12.1 g) as a yellowish amorphous powder, which was subjected to CC (silica gel, cyclohexane/acetone $8:1 \rightarrow 1:2$): *Frs. A* (94 mg), *B* (399 mg), *C* (2.3 g), *D* (2.2 g), *E* (2.1 g), *F* (1.3 g), and *G* (2.8 g). *Fr. B* was further subjected

to CC (silica gel, cyclohexane/acetone $8:1 \rightarrow 4:1$): majusine C (68 mg), delbonine (29 mg), and 6acetyldelpheline (94 mg). CC of Fr. C (silica gel, cyclohexane/acetone $7:1 \rightarrow 2:1$) provided deltatsine (300 mg), brownine (50 mg), 14-acetyldelcosine (10 mg), 14-acetylbrownine (9 mg), tatsienenseine A (**1**; 33 mg), and postanisine F (68 mg). Fr. D was subjected CC (silica gel, cyclohexane/acetone $5:1 \rightarrow 1:2$): ajacine (45 mg), delcosine (10 mg), leroyine 14-O-acetate (10 mg), 7-acetylbarbaline (10 mg), acetyldelgrandine (10 mg), and deacetylambiguine (10 mg). Separation of Fr. E by CC (silica gel H, CHCl₃/ MeOH $80:1 \rightarrow 20:1$) yielded ajadelphine (16 mg) and 14-deacetylnudicauline (18 mg). Separation of Fr. F by CC (silica gel, CHCl₃/MeOH $80:1 \rightarrow 10:1$) yielded delsoline (28 mg), barbaline (79 mg), tatsienenseine B (**2**; 16 mg), and tatsienenseine C (**3**; 9 mg). Further purification of Fr. G by CC (silica gel, CHCl₃/MeOH $80:1 \rightarrow 10:1$) gave delsemine A (16 mg), delsemine A (12 mg), tatsinine (14 mg), and delgrandine (20 mg).

Tatsienenseine A (=(1β , 2α , 3β , 11α , 13α , 15α)-1,2,3,11,13,15-*Hexahydroxy*-21-*methyl*-19,21-secohetisan-19-al 1,3,11,15-*Tetraacetate* 2,13-*Dibenzoate*; **1**): White amorphous powders. [α] $_{20}^{20}$ = +27.1 (c = 1.0, CHCl₃). IR (KBr): 3736, 2932, 1748, 1541, 1232. NMR: *Tables 1* and 2. ESI-MS: 784 ([M + H]⁺). HR-ESI-MS: 784.2961 ([M + H]⁺, C₄₃H₄₆NO₁₃; calc. 784.2969).

Tatsienenseine B (=(6 β ,13 α)-6-Hydroxy-3-oxohetisan-13-yl 2-Methylpropanoate; **2**): White amorphous powder. [α]_D²⁰ = +21.9 (c = 1.0, CHCl₃). IR (KBr): 3726, 2932, 1746, 1236. NMR: *Tables 1* and 2. ESI-MS: 398 ([M + H]⁺). HR-ESI-MS: 398.2326 ([M + H]⁺, C₂₄H₃₂NO₄⁺; calc. 398.2331).

Tatsienenseine $C (= (13\alpha)$ -3-Oxohetisan-13-yl 2-Methylpropanoate; **3**): White amorphous powders. $[\alpha]_{D}^{20} = +9.9 (c = 1.0, CHCl_3)$. IR (KBr): 2939, 1748, 1233. NMR: *Tables 1* and 2. ESI-MS: 382 ([M + H]⁺). HR-ESI-MS: 382.2378 ([M + H]⁺, C₂₄H₃₂NO₃⁺; calc. 382.2382).

REFERENCES

- F.-P. Wang, X.-T. Liang, in 'The Alkaloids: Chemistry and Biology', Ed. G. A. Cordell, Elsevier Science, New York, 2002, Vol. 59, pp. 1–280.
- [2] F.-P. Wang, Q.-H. Chen, X.-T. Liang, in 'The Alkaloids: Chemistry and Biology', Ed. G. A. Cordell, Elsevier Science, New York, 2009, Vol. 67, p. 1–78.
- [3] F.-P. Wang, Q.-H. Chen, in 'The Alkaloids: Chemistry and Biology', Ed. G. A. Cordell, Elsevier Science, New York, 2010, Vol. 69, p. 1–577.
- [4] F.-P. Wang, Q.-H. Chen, X.-Y. Liu, Nat. Prod. Rep. 2010, 27, 529.
- [5] W.-C. Wang, M. Warnock, in 'Flora of China', Eds. Z.-Y. Wu, P. Raven, D.-Y. Hong, Science Press, Beijing, 2004, p. 223.
- [6] S. W. Pelletier, J. A. Glinski, B. S. Joshi, S. Y. Chen, Heterocycles 1983, 20, 1347.
- [7] B. S. Joshi, J. A. Glinski, H. P. Chokshi, S. Y. Chen, S. K. Srivastava, S. W. Pelletier, *Heterocycles* 1984, 22, 2037.
- [8] X. Zhang, J. K. Snyder, S. J. Balawant, J. A. Glinski, S. W. Pelletier, Heterocycles 1990, 31, 1879.
- [9] B. S. Joshi, J. K. Wunderlich, S. W. Pelletier, Can. J. Chem. 1987, 65, 99.
- [10] J. A. Glinski, B. S. Joshi, S. Chen, S. W. Pelletier, Tetrahedron Lett. 1984, 25, 1211.
- [11] F.-Z. Chen, D.-L. Chen, Q.-H. Chen, F.-P. Wang, J. Nat. Prod. 2009, 72, 18.
- [12] Q.-P. Jiang, W. L. Sung, *Heterocycles* 1985, 23, 11.
- [13] H. Bando, K. Wada, J. Tanaka, S. Kimura, E. Hasegawa, T. Amiya, *Heterocycles* 1989, 29, 1293.
- [14] A. S. Narzullaev, M. S. Yunusov, S. Y. Yunusov, Khim. Prir. Soedin. 1973, 9, 497.
- [15] S. W. Pelletier, H. K. Desai, R. S. Sawhney, N. V. Mody, J. Nat. Prod. 1980, 43, 395.
- [16] D.-L. Chen, L.-Y. Lin, Q.-H. Chen, X.-X. Jian, F.-P. Wang, J. Asian Nat. Prod. Res. 2003, 5, 209.
- [17] S. Sakai, H. Takayama, T. Okamoto, Yakugaku Zasshi 1979, 99, 647.
- [18] Y. L. Bai, M. Benn, Phytochemistry 1992, 31, 3243.
- [19] G. D. Manners, R. Y. Wong, M. Benson, M. H. Ralphs, J. A. Pfister, *Phytochemistry* 1996, 42, 875.
- [20] Y. P. Deng, D. H. Chen, W. L. Sung, Acta Chim. Sin. 1992, 50, 822.
- [21] S. W. Pelletier, B. H. Sudhakav, J. Nat. Prod. 1992, 55, 736.
- [22] M. H. Benn, Phytochemistry 1989, 28, 919.
- [23] B. S. Joshi, H. K. Desai, S. W. Pelletier, M. G. Newton, J. Crystallogr. Spectrosc. Res. 1992, 22, 477.

Received August 23, 2010